MESHES IM DByeci nope

In this section we'll cover the following topics:

How to create and delete mesh primitives such as cubes, spheres and cones.
How to set the initial properties of primitives.
How to adjust the units of measurement.
The purpose of the 3D cursor.
How to adjust an object's origin.
How to resize, rotate and move mesh objects.

We'll start by creating a Plane, the first of the listed primitives and also the simplest with only four vertices, four edges and a single face. Remember, a new object is always placed over the 3D cursor.

NOTE

A Last Op panel only exists until another operation is performed at which point it is replaced by a new last Op panel.

The next set of values, labelled Location, sets the position of the plane by moving it so that its origin is at the specified location. In the example below the plane is moved so that its origin is at location $(3,-1,2)$.

Many operations we perform during modelling creates a Last Op panel (also known as the Operator panel) in the bottom left of the 3D Viewport. This allows us to adjust various parameters of the operation we've just performed.

Generate UVs

refers to texturing and will be discussed in a later chapter.

Align determines which z-axis the mesh is aligned along. By default it is the World's z-axis, but if we change this to View (whose z-axis points out of the screen), the Plane aligns directly with our viewpoint.

Finally, Rotation specifies the plane's rotation about the x, y and z axes. Normally, this will be measured from the plane's own global axes. Rotation is measured in degrees by default. Below a plane is rotated 45° about its y-axis.

If we delete our plane and then create a new plane we'll see that Blender has remembered the last Size setting and has created this new plane with sides 5 metres in length but the Location and Rotation values are reset.

After deleting the Cube we can add the next mesh option, Circle.
This creates a shape made only of vertices and edges. There are no faces. But the Last Op panel has some additional options.

Radius sets the radius of the circle. Fill Type offers options to create one or more faces for the inner part of the circle. Ngon fills the circle with a single face. Triangle Fans creates a set of tris (3 edge faces) meeting at the circle's centre.

Once we've selected $A d d>M e s h>C u b e$ from the 3D Viewport's menu, we can see that the cube offers the same initial properties in the Last Op panel as the Plane:
Size, Generate UVs, Align, Location and Rotation.

Vertices gives the number of vertices around the circumfrence of the circle. If we reduce this value the shape becomes less circlelike.

UV Sphere is the next mesh option. The Last Op panel has two new options. These are Segments and Rings. The faces that make up a single vertical loop is a segment. Faces that make up a single horizontal loop is a ring.

The Ico Sphere mesh is constructed from tris. The only new Last Op panel option is Subdivisions which, in effect controls how many tris are used to create the sphere.

Reducing the Vertices value gives a less rounded shape. Increasing the Vertices makes the curve smoother.

Cap Fill Type determines the type of face used to fill the top and bottom of the cylinder (ngon or tris) or to leave them unfilled.

The Cylinder has some features similar to the Circle since the top and bottom of the cylinder are, in effect circles. This means that some of the Last Op panel options are similar to those of the Circle.

Radius sets the radius
of the cylinder.

The Depth setting adjusts the height of the cylinder.

The Cone mesh's options are mostly familar but they include two Radius values.

Radius 1 adjusts the width of the Cone's base.

Base Fill Type determines how the base and top caps are handled (options being: none, ngon, or tris). Below, we see the result of the caps having been removed.

Vertices allow us to create a pyramid shape (values 3 or 4) or a very smooth curved cone shape (value 100).

Depth sets the height of the Cone.

Vertices, Radius1, Radius2, Depth and Cap Fill Type values will be reused

The option Major Segments refers to the number of faces that make up a horizontal loop. Minor Segments refers to the number of faces that make up a vertical loop.

The Major Radius is the distance from the centre of the Torus to half way through the solid ring.
The Minor Radius is half the width of the outer ring.

An alternative method of resizing the Torus is to select the Dimensions Mode's Exterior/Interior option This changes the two values displayed below to Exterior Radius and the Interior Radius.

Reducing the Minor Segments to 3 gives us the shape shown below left. Reducing the Major Segments to 3 as well, gives us the shape shown below right.

Major Segments	48
Minor Segments	3

Major Segments	3
Minor Segments	3

By adjusting the Major and Minor Radius values we change the overall size of the Torus, the size of the hole in the middle and the thickness of the Torus.

The radii measured by Exterior Radius and Interior Radius are shown below.

Because of the many options available when setting up a Torus, Blender offers a way of saving and naming a set of attribute values so that another matching Torus is easily created. To do this we must first set all the necessary Torus values and then click on the + sign to the right of Operator Presets in the Command Settings panel.

Add Torus		
Operator Presets		
Major Segments	12	
Minor Segments	12	
Dimensions Mode	Major/Minor	\checkmark
Major Radius	1 m	

Clicking on the - icon will delete the last named preset to have been used.

Even if we haven't saved the various Torus settings in the way described, any new Torus will make use of the current settings of the following parameters:

Major Segments
Minor Segments Dimensions Mode Radius settings

Grid's Last

 Op panel options allow us to specify the number of faces in both the x and y directions.X Subdivisions, Y Subdivisions and Size settings are reused by subsequent Grids.

This opens a new panel where we can specify a name for the current value settings. When another Torus is added, the name can then be selected to apply the associated settings to the Torus.

The next mesh option, Grid, may look identical to the Plane mesh but if we look at its structure in Edit Mode, we can see that it is constructed from many more faces.

The final mesh is a monkey head - affectionately known as
Suzanne. Although not a true primitive, it is often used to show off various features of Blender.

Blender Basics: Meshes in Object Mode

When creating a mesh we should always go for the minimum number of faces we require since not only will we reduce memory and processing requirements, but this can also make the modelling process much easier when we are working in Edit Mode. For example, one of the Grids below is created with 10 faces while the other has 100 . In the modelling process we want to raise one end of the grid. Both end up with exactly same result but one takes a lot less effort for both the modeller and the machine.

One situation where we might be tempted to increase the number of faces is when creating a curved surface. For example, we can see that the second sphere below looks more curved than the first.

In fact, the only visual clue to the sphere's low face polycount is the straight edges on its profile.

Original

However, when we apply Shade Smooth to a Cylinder, the result looks wrong.

Original

With Shade Smooth

By checking Auto Smooth, Blender only smoothes out faces which are at an angle of 30° or less to each other - the angle value can be changed. Since the top faces of the cylinder are at an angle greater than 30° to the side faces, we can achieve a better result.

The trouble is that Shade Smooth is attempting to smooth out the whole surface of the Cylinder when all we want is to smooth out the vertical, curved section. Luckily, the Last Op Panel has a parameter for Shade Smooth that helps with the problem.

We need to check the same Auto Smooth option when applying Shade Smooth to a Cone.

