GUI: A Stopwatch

In this Supplement:

(] Designing a Stopwatch Widget
(1 Coding a Stopwatch Widget
() Testing a Stopwatch Widget

() Omissions and Mistakes

Hands On AppGameKit Studio Volume 2: Supplement 1 1

Creating a Stonpwatch Wideet

Introduction

In Chapter 4 of Hands On AppGameKit Studio Volume 2 we cover the creation of
graphical user interface controls (or widgets). It covers the coding of various widgets
such as Buttons, Checkboxes, Radio buttons, Frames and Popup menus.

This supplement adds to that collection by creating a Stopwatch widget, examples
of which can be seen in the screen shot below.

The stopwatch displays a rotating “seconds” hand and a digital time showing the
elapsed time in minutes and seconds.

The larger of the two buttons is used to start and stop the timer while the smaller
button resets the timer to zero.

Identifying the Required Operations

There are several operations we’ll want to have available when using a stopwatch.
These are briefly described below:

CreateGUIStopwatch()
Creates a stopwatch. Initially the stopwatch is set to
zero and stopped. This also specifies the position, size
and images used in the visualisation of the watch.

StartGUIStopwatch()
Sets the watch to a running state.

StopGUIStopwatch()
Sets the watch to a stopped state.

GetGUIStopwatchState()
Returns the state of the watch (running or stopped).

2 Hands On AppGameKit Studio Volume 2: Supplement 1

UpdateGUIStopwatch()
When the watch is in the started state, this operation
updates the time displayed on the watch. If the watch is
in the stopped state, this operation has no effect.

ResetGUIStopwatch()
Resets the time to zero. Sets the watch to the stopped
state.

HandleGUIStopwatch()
Returns an indicator of how the user has interacted with
the stopwatch. The following return values are possible:

-1 : the user has stopped the watch
0 : there is no valid user interaction
+1 : the user has started the watch
+2 : the user has reset the watch

The user interacts with the stopwatch by clicking on the
two buttons at the top of the watch.

GetGUIStopwatchTime()
Returns the elapsed time as recorded on the stopwatch
(in milliseconds).

DeleteGUIStopwatch()
Deletes the stopwatch and its components.

SetGUIStopwatchControls()
Enables/disables the use of the stop/start and reset
buttons by the user without stopping the watch.

The last option given above can be used when a stopwatch is being used to record a
player’s time taken to perform a task. After all, we don’t want them stopping or
resetting the timer!

Other operations are likely to be required because of the sprite-like nature of most
GUI widgets. The ones included here are:

SetGUIStopwatchPosition()
Moves the watch to a specified position.

SetGUIStopwatchSize()
Sets the dimensions of the watch.

SetGUIStopwatchDepth()
Sets the layer for the watch face and the associated
visual elements.

Stopwatch Visual Elements

Unlike most of the other widgets we have created, the stopwatch widget is constructed
from several elements and creating your own graphics will be a more complex task.

Exactly what components make up a stopwatch are shown in the diagram below.

Hands On AppGameKit Studio Volume 2: Supplement 1 3

Start/Stop
button sprite

Seconds
hand sprite

Y

Digital time
label

4

Reset button

sprite

Face
sprite

Implementing the Stopwatch

Data

Our first consideration in implementing our Stopwatch widget is to consider what
information we’ll need to store about the widget. In fact, most of what is required
are ID’s to images, sprites and the label. We’ll also need to record the current state of
the stopwatch (stopped or running), the elapsed time and whether the controls (the
two buttons at the top of the watch) have been enabled.

Assuming those using this widget may want to create more than one stopwatch in an
app, we will make use of an array element to store details of each stopwatch. As we
highlighted with previous widgets, when using an array, the simplest way of deleting
a watch is by making use of a deleted indicator rather than erasing the array entry.

So our code for the data associated with a single stopwatch becomes:

type StopwatchType

faceimg as
startstopimg as
resetimg as
handimg as
facespr as
ssspr as
resetspr as
handspr as
timetxt as
time as
state as
enabled as
deleted as
endtype

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

//ID
//1ID
//ID
//ID
//ID
//1ID
//ID
//1ID
//ID

of
of
of
of
of
of
of
of
of

face image

start/stop button image
reset button image

watch hand image

face sprite

start/stop button sprite
reset button sprite
watch hand sprite

text showing elapsed time

//Elapsed time since started
stopped, 1: running
//Buttons enabled (l:yes, 0:no)
exists, l:deleted

//0:

//0:

And, allowing for more than one stopwatch, we’ll also need an array of our
StopwatchType structure where we can store details of every watch:

global GUIStopwatches as StopwatchType[0]

Notice that the array has been created with only a single element (cell zero — which

Hands On AppGameKit Studio Volume 2: Supplement 1

we won’t be using). We’ll grow the array each time a stopwatch is added. And
although this is not an efficient way to increase the size of an array, it has the advantage
of keeping things simple.

Like our previous widgets, each stopwatch will be assigned an ID. In this case, the
ID will be the subscript of the cell in which a stopwatch’s details are stored. The
figure below demonstrates the idea.

When a stopwatch is created, its details The subscript of the cell to which the
will be added to the GUIStopwatches details were added becomes the ID of

array. the stopwatch.
*y

T,
Details
added here Stopwatch ID
is subscript

GUIStopwatches

GUIStopwatches
0

Functions

CreateGUIStopwatch()

Mini-spec

FUNCTION NAME : CreateGUIStopwatch

PARAMETERS
In X :real
y : real
w : real
h : real
image : string
Out : o id : integer
PRE-CONDITION : image file and associated image files exist
DESCRIPTION : Creates a stopwatch widget using image as the

basis of the face of the stopwatch. Other images

used (for the buttons and seconds hand) are

assumed to have names based on image.
start/stop button : adds “ss” to image name
reset button : adds “reset” to image name
seconds hand: adds “hand” to image name

The seconds hand points zero.

The time in digital form reads 0:00

The two buttons are enabled.

The watch is stopped.

The face sprite is placed at (x.y) with dimensions

w by h. Other sprites and the text are sized and

positioned appropriately.

The face is on layer 10, the buttons on 11, hand on

9 and the text on layer 10.

Hands On AppGameKit Studio Volume 2: Supplement 1 5

Code:

//*** Creates stopwatch. Uses images facefile+facefileshad+
& facefiless+facefilereset+facefilehand ***
//*** The time elapsed is set to zero and the watch is stopped,
Lbuttons are enabled *xk
function CreateGUIStopwatch(x as float, y as float, w as float,
Lh as float, facefile as string)
//*** Add cell to stopwatch list ***
GUIStopwatches.length = GUIStopwatches.length+l
//*** Last position in array is new button’s ID ***
id = GUIStopwatches.length
//*** Load images ***
GUIStopwatches[id] .faceimg = LoadImage (facefile)
GUIStopwatches[id] .startstopimg = LoadImage (Left (facefile,
L Len (facefile) -4) +”ss”+Right (facefile,4))
GUIStopwatches[id] .resetimg = LoadImage (Left (facefile,
L Len (facefile) -4) +”reset”+Right (facefile, 4))
GUIStopwatches[id] .handimg = LoadImage (Left (facefile,
%Len(faceﬁle)—4)+”hand"+Right(faceﬁ1e,4))
//*** Create, size and position face sprite ***
GUIStopwatches[id] .facespr = CreateSprite (GUIStopwatches[id].
% faceimg)
faceid = GUIStopwatches[id].facespr
SetSpriteSize (faceid,w,h)
SetSpritePosition (faceid,x,y)
//*** Create, size, position and layer start/stop button ***
GUIStopwatches[id] .ssspr = CreateSprite (GUIStopwatches[id].
U startstopimg)
ssid = GUIStopwatches[id] .ssspr
SetSpriteSize(ssid,w*0.15,-1)
SetSpritePositionByOffset (ssid,x+GetSpriteWidth (faceid)/2.0,y-
L GetSpriteHeight (ssid) /2.1)
SetSpriteDepth (ssid,GetSpriteDepth (faceid)+1)
//*** Create, size, position and layer reset button ***
GUIStopwatches[id] .resetspr = CreateSprite (GUIStopwatches[id].
L resetimg)
resetid = GUIStopwatches[id] .resetspr
SetSpriteSize (resetid,w*0.13,-1)
SetSpritePositionByOffset (resetid, x+GetSpriteWidth (faceid)/1.5,y)
SetSpriteDepth (resetid,GetSpriteDepth (faceid)+1)
//*** Create, align, size, position and layer time label ***
GUIStopwatches[id] .timetxt = CreateText (“0:00")
txtid = GUIStopwatches[id].timetxt
SetTextAlignment (txtid, 2)
SetTextSize (txtid,GetSpriteHeight (faceid) *0.08)
SetTextPosition (txtid,x+GetSpriteWidth (faceid)/1.68, y+
L GetSpriteHeight (faceid) /1.747)
SetTextDepth (txtid,GetSpriteDepth (faceid))
//*** Create, size, position and layer seconds hand ***
GUIStopwatches[id] .handspr = CreateSprite (GUIStopwatches[id].
“handimg)
handid = GUIStopwatches[id] .handspr
SetSpriteSize (handid,-1,GetSpriteHeight (faceid) *0.22)
SetSpiteOffset (handid,GetSpriteWidth (handid) /2,
U GetSpriteHeight (handid))
SetSpritePositionByOffset (handid,GetSpriteX (faceid) +
U GetSpriteWidth (faceid) /2.0,
GetSpriteY (faceid) +GetSpriteHeight (faceid) /2.0)
SetSpriteDepth (handid, GetSpriteDepth (faceid)-1)

Hands On AppGameKit Studio Volume 2: Supplement 1

RS

The image files
required are:
swatch.png
swatchss.png
swatchrest.png
swatchhand.png

Hands On AppGameKit Studio Volume 2: Supplement 1

//*** Stopwatch not deleted ***

GUIStopwatches[id] .deleted = 0

//*** Stopwatch buttons can be used ***

GUIStopwatches[id] .enabled =1

//*** Stopwatch stopped ***

GUIStopwatches[id] .state = 0
endfunction id

Note that the offset of the seconds hand sprite has been move to near the centre
bottom of the sprite since this is the point about which we’ll want the hand to rotate.

~

/Activity 1

Start a new project called StopwatchTest and add the code given above for the
Stopwatch widget’s data and its CreateGUIStopwatch() function.

In CreatelnitialLayout(), call CreateGUIStopwatch() and check that a
stopwatch appears. Remember to copy the necessary image files to the project’s
media folder.

. J
StartGUIStopwatch()
Mini-spec:
FUNCTION NAME : StartGUIStopwatch
PARAMETERS
In :id : integer
Out : None

PRE-CONDITION : idisa valid stopwatch ID.

DESCRIPTION : Starts the watch running. If the watch has been
stopped previously, it starts running at the time it
was stopped. If the watch is already running, this
operation has no effect.

Code:

function StartGUIStopwatch(id as integer)
//*** If the id is invalid, exit ***
if id < 1 or id > GUIStopwatches.length
exitfunction
endif
//*** If stopwatch deleted, exit ***
if GUIStopwatches[id].deleted =1
exitfunction
endif
//*** Set to running state ***
GUIStopwatches[id] .state = 1
endfunction

StopGUIStopwatch()

Mini-spec:

FUNCTION NAME : StopGUIStopwatch

PARAMETERS
In :id : integer
Out : None

PRE-CONDITION : idisavalid stopwatch ID.

operation has no effect.

DESCRIPTION : Stops the watch running. If the watch is running,,
it stops. If the watch is already stopped, this

Code:

function StopGUIStopwatch(id as integer)
//*** If the id is invalid, exit ***
if id < 1 or id > GUIStopwatches.length
exitfunction
endif
//*** If stopwatch deleted, exit ***
if GUIStopwatches[id].deleted = 1
exitfunction
endif
//*** Set to stopped state ***
GUIStopwatches[id] .state = 0
endfunction

GetGUIStopwatchState()

Mini-spec:

FUNCTION NAME : GetGUIStopwatchState
PARAMETERS

stopped. Returns -1 if id is invalid.

In :id : integer
Out : result : integer
PRE-CONDITION : idis avalid stopwatch ID.
DESCRIPTION : Sets result to 1 if the watch is running; 0 if it is

Code:

function GetGUIStopwatchState(id as integer)
//*** If the id is invalid, exit -1%*x*
if id < 1 or id > GUIStopwatches.length
exitfunction -1
endif
//*** If stopwatch deleted, exit -1 ***
if GUIStopwatches[id].deleted =1
exitfunction -1
endif
//*** Set result to watch current state ***
result = GUIStopwatches[id].state
endfunction result

Hands On AppGameKit Studio Volume 2: Supplement 1

UpdateGUIStopwatch()

StartGUIStopwatch() and StopGUIStopwatch() only have an effect on the state field
of a stopwatch, but the visual effect of starting and stopping the watch and of time
passing is performed by the UpdateGUIStopwatch() function.

Mini-spec:
FUNCTION NAME : StopGUIStopwatch
PARAMETERS
In :id integer
Out : None

PRE-CONDITION : idis avalid stopwatch ID.

DESCRIPTION : If the watch is running, the elapsed time is saved
and the seconds hand is moved to give an
indication of the time elapsed. The seconds hand
makes a full rotation of the face every 60 seconds.
In addition the digital label shows the elapsed
time in minutes and seconds.

Code:

function UpdateGUIStopwatch (id as integer)

//*** If the id is invalid, exit ***

if id < 1 or id > GUIStopwatches.length
exitfunction

endif

//*** If stopwatch deleted, exit ***

if GUIStopwatches[id].deleted =1
exitfunction

endif//*** If watch stopped, exit ***

if GUIStopwatches[id].state = 0
exitfunction

endif

//*** Record the time passed ***

GUIStopwatches[id] .time = GetMilliseconds ()

msecs = GUIStopwatches[id].time

//*** Set angle of hand to show seconds into current minute ***

SetSpriteAngle (GUIStopwatches[id] .handspr,msecs*6.0/1000.0)

//*** Update the digital time on label ***

SetTextString (GUIStopwatches[id] . timetxt,

L ToMinutesSeconds (msecs))

endfunction

Notice that the string for the digital time label is formatted using a helper function
named ToMinutesSeconds(). This is coded as

//*** Creates formatted string in the form (mm)m:ss ***
function ToMinutesSeconds (msecs as integer)

totalsecs = msecs /1000

mins = totalsecs / 60

secs = Mod(totalsecs, 60)

result as string

result = Str (mins)+”:”+Right (“00”+Str (secs) ,2)
endfunction result

Hands On AppGameKit Studio Volume 2: Supplement 1 9

[Activity 2 A

In StopwatchTest, add the code for functions StartGUIStopwatch(),
StopGUIStopwatch(), GetGUIStopwatchState(), UpdateGUIStopwatch() and
ToMinutesSeconds().

In the main program, add a call to StartGUIStopwatch() (in
CreatelnitialLayout()) and UpdateGUIStopwatch() (in HandleOther()).

Does the stopwatch display the time correctly?

(" Activity 3 A

In StopwatchTest, to check that StopGUIStopwatch() operates correctly,
make a call to that function after 5 seconds has passed (place the call in
HandleOther()).

Does the watch stop after five seconds as expected?

. J

[Activity 4 A

In StopwatchTest, modify the code so that the stopwatch only begins running
after five seconds have passed.

Does the watch behave as expected?

. J

Activity 4 highlights a problem with our watch: it displays the time the app has been
running rather than the time the stopwatch has been running.

In an attempt to overcome this problem, we might switch to using Timer () rather
than GetMilliseconds () to get the elapsed time. Using Timer () we have the option
of using ResetTimer () to reset the value returned by Timer () to zero.

This approach requires us to adjust the code in StartGUIStopwatch() to

//*** Starts stopwatch running ***
function StartGUIStopwatch(id as integer)
//*** If the id is invalid, exit ***

if id < 1 or id > GUIStopwatches.length
exitfunction

endif

//*** If stopwatch deleted, exit ***

if GUIStopwatches[id].deleted =1
exitfunction

endif

//*** Set to running state ***

GUIStopwatches[id] .state = 1

//*** Set elapsed time to zero ***

ResetTimer ()

endfunction

Since Timer () returns seconds (and fractions of a second) rather than milliseconds,
the minimum change required to UpdateGUIStopwatch() is that the line

GUIStopwatches[id].time = GetMilliseconds ()

Hands On AppGameKit Studio Volume 2: Supplement 1

to

GUIStopwatches[id].time = Timer () *1000

/Activity 5)

In StopwatchTest, make the modifications to StartGUIStopwatch() and
UpdateGUIStopwatch() as suggested above.

Does the watch now behave as expected?

Extend the if statement in HandleOther() by adding
and GetGUIStopwatchState(g.id) = 0

How does this affect the program?

. J

For the moment we’ll make the (mistaken) assumption that we’ve fixed the elapsed
time problem and continue implementing the other operations of the stopwatch.

ResetGUIStopwatch()
Mini-spec:
FUNCTION NAME : ResetGUIStopwatch
PARAMETERS
In : o id : integer
Out : None
PRE-CONDITION : idis avalid stopwatch ID.
DESCRIPTION : The watch’s time is reset to zero and the watch
stopped. The seconds hand returns to the 0
position and the digital time is set to 0:)).
Code:

//*** Resets the time to zero and places ***
//*** the watch in stopped mode * ok k
function ResetGUIStopwatch(id as integer)
//*** If the id is invalid, exit ***
if id < 1 or id > GUIStopwatches.length
exitfunction
endif
//*** If stopwatch deleted, exit ***
if GUIStopwatches[id].deleted =1
exitfunction
endif
//*** Stopwatch stopped ***
GUIStopwatches[id] .state = 0
//*** No time has been recorded ***
GUIStopwatches[id] .time = 0
//*** Reset second hand and digital time ***
SetSpriteAngle (GUIStopwatches[id] .handspr, 0)
SetTextString (GUIStopwatches[id] . timetxt,”0:00")
endfunction

Hands On AppGameKit Studio Volume 2: Supplement 1 11

Activity 6

Add ResetGUIStopwatch() to StopwatchTest then modify the code so that
CreatelnitialLayout() starts the watch and HandleOther() resets it after five
seconds.

Does the watch behave as expected?

HandleGUIStopwatch()

This is the function which allows the user to interact with the stopwatch (as long as
the watch controls aren’t disabled). As such it needs to manipulate the position of the
buttons on the watch to give a visual indication that the watch has reacted to the
user’s input. Pressing the buttons will cause functions StartGUIStopwatch(),
StopGUIStopwatch() or ResetGUIStopwatch() to be executed as appropriate. The
routine returns a value indicating what action, if any, the user has taken.

Mini-spec:

FUNCTION NAME : HandleGUIStopwatch

PARAMETERS

In :id : integer

Out : result :integer
PRE-CONDITION : idisavalid stopwatch ID AND watch is enabled.
DESCRIPTION : Ifthe user presses on the start/stop button, the

button will be seen to depress and then return to
its original position. This will cause the watch to
switch from its current state (running or stopped)
to the opposite state. The time displayed will not
be affected if the watch is stopped. The time
displayed will advance from its current setting if
the watch is started.

If the user presses the reset button, the button will
be seen to depress and then return to its original
position. This will cause the watch to reset the
seconds hand to the zero position and the digital
time to 0:00. The watch will be set to the stopped
state.

result will be set as follows:

-1 if the watch is stopped by pressing the
start/stop button.

0 if id is invalid, the controls are disabled
or the user has not interacted with the
watch.

1 the watch was started by pressing the
start/stop button.

2 the watch was reset by pressing the
reset button.

Hands On AppGameKit Studio Volume 2: Supplement 1

Code:

//*** Handles user interaction with watch **x*
//*** Allows start/stop and reset *kk
//*** Returns a value indicating action ok
function HandleGUIStopwatch(id as integer)
//*** If the id is invalid, exit zero **x*
if id < 1 or id > GUIStopwatches.length
exitfunction 0
endif
//*** If stopwatch deleted, exit zero ***
if GUIStopwatches[id].deleted = 1
exitfunction 0
endif
result = 0
//*** If watch disabled, exit zero ***
if GUIStopwatches[id].enabled = 0
exitfunction 0
endif
result = 0
//*** If pointer pressed ***
if GetPointerPressed()
hit = GetSpriteHit (GetPointerX (), GetPointerY())
//*** If start/stop button pressed ***
if hit = GUIStopwatches[id].ssspr
//*** Show start/stop button moving down and back ***
SetSpriteY (hit, GetSpriteY (hit)+GetSpriteHeight (hit)/2.0)
Sync ()
Sleep(100)
SetSpriteY (hit, GetSpriteY (hit)-GetSpriteHeight (hit)/2.0)
//*** If watch stopped, start it ***
if GUIStopwatches[id].state = 0
StartGUIStopwatch (id)
GUIStopwatches[id] .state = 1
result =1
else //If watch running, stop it

StopGUIStopwatch (id)
result = -1
endif

//*** If reset pressed ***

elseif hit = GUIStopwatches[id].resetspr
//*** Show reset button moving down and back ***
SetSpritePosition (hit,GetSpriteX (hit)-GetSpriteWidth (hit)/
% 5.0,GetSpriteY (hit) +GetSpriteHeight (hit)/4.0)
Sync ()
Sleep (100)
SetSpritePosition (hit,GetSpriteX (hit)+GetSpriteWidth (hit)/
% 5.0,GetSpriteY (hit) -GetSpriteHeight (hit) /4.0)
ResetGUIStopwatch (id)
result = 2

endif

endif
endfunction result

/Activity 7)

Add HandleGUIStopwatch() to StopwatchTest then call that function
from HandleUserlInput(). Remove the call to ResetGUIStopwatch() in
HandleOther().

Does the watch stop, start and reset as expected?

. J

Hands On AppGameKit Studio Volume 2: Supplement 1 13

Activity 7 highlights the sort of problems that occur in real world programming.
Books on programming generally present perfect programs that appear to have been
developed flawlessly by the author on the first attempt. This can give those starting
out in programming the idea that, because they are forever making mistakes, they
aren’t going to be too great at programming. But, of course, the truth is we all make
mistakes all of the time when it comes to programming.

In the case of our stopwatch our error is one of omission and limited understanding
of the consequences of the code we’ve created. We’ve forgotten to take into account
the fact that, since StartGUIStopwatch() calls ResetTimer() and since the stopwatch
uses the value returned by Timer() alone to determine the elapsed time, the time must
restart at zero each time it enters running mode.

When a mistake is discovered, the further on we are in our coding the more complex
the changes required will be to fix the problem. In this case, we need to rethink how
we calculate the time displayed on the watch.

Let’s say we stop the watch when it is reading 7 seconds and then restart it 10 seconds
later. At this point we will want the watch to start running again from the 7 seconds
mark. This means our calculation should be

time on watch = time on watch when last stopped + time elapsed since watch was restarted

In order to perform that calculation we are going to have to record the watch’s time
when it is stopped. And to do that, we’re going to have to add a new field to
StopwatchType:

type StopwatchType

faceimg as integer //ID of face image
startstopimg as integer //ID for start/stop button image
resetimg as integer //ID for reset button image
handimg as integer //ID of watch hand image
facespr as integer //ID of face sprite
ssspr as integer //ID of start/stop button sprite
resetspr as integer //ID of reset button sprite
handspr as integer //ID of watch hand sprite
timetxt as integer //ID of text showing elapsed time
time as integer //Elapsed time since started (msecs)
stoptime as integer //Time on watch when stopped
state as integer //0: stopped, 1l: running
enabled as integer //Buttons enabled (l:yes, 0:no)
deleted as integer //(0: exists, 1l:deleted)

endtype

The value in this new field will have to be set when StopGUIStopwatch() is called:

//*** Stops the stopwatch running ***
function StopGUIStopwatch(id as integer)
//*** If the id is invalid, exit ***
if id < 1 or id > GUIStopwatches.length
exitfunction
endif
//*** If stopwatch deleted, exit ***
if GUIStopwatches[id].deleted =1
exitfunction
endif
//*** Set to stopped state ***
GUIStopwatches[id] .state = 0
//*** Save current time on watch ***
GUIStopwatches[id] .stoptime = GUIStopwatches[id] . time
endfunction

Hands On AppGameKit Studio Volume 2: Supplement 1

In UpdateGUIStopwatch() we’ll need to use our new formula to calculate the time
shown on the watch:

//*** Update the stopwatch visuals, moving *kk
//*** seconds hand and changing digital time **%*
function UpdateGUIStopwatch(id as integer)
//*** If the id is invalid, exit ***
if id < 1 or id > GUIStopwatches.length
exitfunction
endif
//*** If stopwatch deleted, exit ***
if GUIStopwatches[id].deleted =1
exitfunction
endif
//*** If watch stopped, exit ***
if GUIStopwatches[id].state = 0
exitfunction
endif
//*** Record the time passed ***
GUIStopwatches[id].time = GUIStopwatches[id].stoptime +
G Timer () 1000
msecs = GUIStopwatches[id].time
//*** Modify angle of seconds hand to show seconds into
L current minute ***
SetSpriteAngle (GUIStopwatches[id] .handspr,msecs*6.0/1000.0)
//*** Update the digital time on label ***
SetTextString (GUIStopwatches[id] . timetxt,
L ToMinutesSeconds (msecs))
endfunction

Finally, in ResetGUIStopwatch(), we’ll need to reset the stoptime value to zero:

//*** Resets the time to zero and places **¥*
//*** the watch in stopped mode ok
function ResetGUIStopwatch(id as integer)

//*** If the id is invalid, exit ***

if id < 1 or id > GUIStopwatches.length

exitfunction

endif

//*** If stopwatch deleted, exit ***

if GUIStopwatches[id].deleted =1

exitfunction

endif

//*** Stopwatch stopped ***

GUIStopwatches[id] .state = 0

//*** No time has been recorded ***

GUIStopwatches[id] .time = 0

GUIStopwatches[id] .stoptime = 0

//*** Reset second hand and digital time ***

SetSpriteAngle (GUIStopwatches[id] .handspr,0)

SetTextString (GUIStopwatches[id] . timetxt,”0:00")
endfunction

Activity 8
In StopwatchTest make the four changes shown above and retest the program.

Do all three operations — start, stop and reset — now perform correctly?

Hands On AppGameKit Studio Volume 2: Supplement 1 15

The next three functions are relatively minor

GetGUIStopwatchTime()

Mini-spec:
FUNCTION NAME : GetGUIStopwatchTime
PARAMETERS
In : o id : integer
Out : result : integer

PRE-CONDITION : idis avalid stopwatch ID.

DESCRIPTION : resultis set to the time recorded internally in the
stopwatch data structure. The time is given in
milliseconds. If the id is invalid, -1 is returned.

Code:

//*** Returns the stopwatch’s time ***
function GetGUIStopwatchTime (id as integer)
//*** If id invalid, exit -1 **x
if id < 1 or id > GUIStopwatches.length
exitfundtion -1
endif
//*** If stopwatch deleted, exit -1 ***
if GUIStopwatches[id].deleted =1
exitfunction -1
endif
//*** Return time ***
result = GUIStopwatches[id].time
endfunction result

DeleteGUIStopwatch()
Mini-spec:
FUNCTION NAME : DeleteGUIStopwatch
PARAMETERS
In :id : integer
Out : None

PRE-CONDITION : idisavalid stopwatch ID.

DESCRIPTION : Deletes the watch’s sprites and images. Also marks
the stopwatch with this ID as deleted without
removing its data.

Code:

//*** Deletes stopwatch and resources ***
function DeleteGUIStopwatch(id as integer)
//*** If id invalid, exit ***
if id < 1 or id > GUIStopwatches.length
exitfundtion
endif

=)

16 Hands On AppGameKit Studio Volume 2: Supplement 1

Code (continued):

//*** If stopwatch deleted, exit ***
if GUIStopwatches[id].deleted = 1
exitfunction

endif

//*** Mark as deleted **x*

GUIStopwatches[id] .deleted =1

//*** Delete sprites ***

DeleteSprite (GUIStopwatches[id] . facespr)

DeleteSprite (GUIStopwatches[id] .ssspr)

DeleteSprite (GUIStopwatches[id] . resetspr)

DeleteSprite (GUIStopwatches[id] .handspr)

//*** Delete label **x*

SeleteText (GUIStopwatches[id] . timetxt)

//*** Delete images ***

DeletelImage (GUIStopwatches[id] . faceimg)

DeletelImage (GUIStopwatches[id] .startstopimg)

DeleteImage (GUIStopwatches[id] .resetimg)

DeleteImage (GUIStopwatches[id] .handimg)
endfunction

SetGUIStopwatchControls()

Mini-spec:
FUNCTION NAME : SetGUIStopwatchControls
PARAMETERS
In :id : integer
flag :integer
Out : None

PRE-CONDITION : idis avalid stopwatch ID.

DESCRIPTION : Enables/disables user interaction with the
stopwatch. If flag is 0, then the start/stop and reset
buttons no longer react to user clicks.

All other values of flag enable the stopwatch
controls.
Code:

//*** Enables/disables user interaction with stopwatch ***
function SetGUIStopwatchControls(id as integer, flag as integer)
//*** If the id is invalid, exit zero ***
if id < 1 or id > GUIStopwatches.length
exitfunction
endif
//*** If stopwatch deleted, exit zero ***
if GUIStopwatches[id].deleted =1
exitfunction
endif
//*** Set controls **x*
if flag = 0
GUIStopwatches[id] .enabled
else
GUIStopwatches[id] .enabled
endif
endfunction

I
o

I
[

Hands On AppGameKit Studio Volume 2: Supplement 1

17

18

Missing Functions

Another common mistake when creating new code is to realise only at the coding
stage that some useful operations have been omitted from the design.

In this case, there are two immediately obvious routines that are missing. These are
GetGUIStopwatchControls() which would return the current setting of the enabled
field defined in StopwatchType and GetGUIStopwatchExists() which returns 1 if a
stopwatch of a given ID exists and returns zero, if the watch does not exist.

(" Activity 9)

In StopwatchTest, add the functions GetGUIStopwatchTime(),
DeleteGUIStopwatch(), SetGUIStopwatchControls().

Create a mini-spec for GetGUIStopwatchControls() and implement it within the
project.

Create a mini-spec for GetGUIStopwatchExists() and implement it within the
project.

To test the routines, add a Print statement to the do. . . Loop of the main
program which displays the value returned by GetGUIStopwatchTime().
In HandleOther(), add code to do the following:

IF user has control of watch AND 5 seconds or more has passed THEN
Disable user control

ENDIF

IF 15 seconds or more has passed AND the stopwatch exists THEN
Delete the Stopwatch

ENDIF

. J

We have tested each of the stopwatch functions we have created and they appear to
be working correctly, so we’ll move on to the final three functions.

SetGUIStopwatchPosition()

When we specify the position of a stopwatch, we are, in fact, specifying the position
of'the top-left corner of the face with the control buttons appearing above the specified
y position. To move a stopwatch to a new location we need to move the sprites and
text label that make up the watch.

Mini-spec:
FUNCTION NAME : SetGUIStopwatchPosition
PARAMETERS
In :id : integer
X : real
y : real
Out : None
PRE-CONDITION : idisa valid stopwatch ID.
DESCRIPTION : Moves the watch with ID id to world coordinates
(x, »)-

Hands On AppGameKit Studio Volume 2: Supplement 1

Code:

Ly as float)

exitfunction
endif

exitfunction
endif

endfunction

//*** Positions stopwatch face top-left at (x,y) ***
function SetGUIStopwatchPosition(id as integer, x as float,

//*** If id invalid, exit ***
if id < 1 or id > GUIStopwatches.length

//*** If stopwatch deleted, exit ***
if GUIStopwatches[id].deleted =1

//*** Create a set of shorter names ***

faceid = GUIStopwatches[id] .facespr

ssid = GUIStopwatches[id].ssspr

resetid = GUIStopwatches[id] .resetspr

handid = GUIStopwatches[id] .handspr

txtid = GUIStopwatches[id].timetxt

//*** Position face ***

SetSpritePosition (faceid, x,y)

//*** Position start/stop button ***

SetSpritePositionByOffset (ssid,x+GetSpriteWidth (faceid) /2.0,y -
U GetSpriteHeight (ssid)/2.1)

//*** Position reset button ***
SetSpritePositionByOffset (resetid, x+GetSpriteWidth (faceid)/1.5,y)
//*** Position time label ***

SetTextPosition (txtid,x+GetSpriteWidth (faceid)/1.68, y +
L GetSpriteHeight (faceid) /1.747)

//*** Position seconds hand ***

SetSpritePositionByOffset (handid,GetSpriteX (faceid),

L GetSpriteY (faceid) + GetSpriteHeight (faceid)/2.0)

SetGUIStopwatchSize()

Size, like position, refers to the face sprite only, with the control buttons adding to
the overall height (width is unaffected). When we adjust the size of the face we must
also adjust the size (and position) of the other elements.

Mini-spec:
FUNCTION NAME SetGUIStopwatchSize
PARAMETERS
In id : integer
w : real
h : real
Out None

PRE-CONDITION id is a valid stopwatch ID.

DESCRIPTION Adjusts the size of the stopwatch’s face (becomes
w units wide and % units high). Other
elements are adjusted in size and position as
required.

Hands On AppGameKit Studio Volume 2: Supplement 1

19

20

Code:

//*** Resizes the specified stopwatch ***
function SetGUIStopwatchSize(id as integer, w as float, h as float)
//*** If id invalid, exit **x*
if id < 1 or id > GUIStopwatches.length
exitfunction
endif
//*** If stopwatch deleted, exit ***
if GUIStopwatches[id].deleted = 1
exitfunction
endif
//*** Create a set of shorter names ***
faceid = GUIStopwatches[id].facespr
ssid = GUIStopwatches[id] .ssspr
resetid = GUIStopwatches[id] .resetspr
handid = GUIStopwatches[id] .handspr
txtid = GUIStopwatches[id].timetxt
x as float
X = GetSpriteX(faceid)
y as float
y = GetSpriteY(faceid)
//*** Sizeface sprite **x*
SetSpriteSize (faceid,w,h)
//*** Size and reposition start/stop button ***
SetSpriteSize(ssid,w*0.15,-1)
SetSpritePositionByOffset (ssid,x+GetSpriteWidth (faceid) /2.0,y -
U GetSpriteHeight (ssid) /2.1)
//*** Size and reposition reset button ***
SetSpriteSize (resetid,w*0.13,-1)
SetSpritePositionByOffset (resetid, x+GetSpriteWidth (faceid)/1.5,y)
//*** Size and reposition time label ***
SetTextSize (txtid,GetSpriteHeight (faceid) *0.08)
SetTextPosition (txtid,x+GetSpriteWidth (faceid)/1.68, y +
L GetSpriteHeight (faceid) /1.747)
//*** Size and reposition seconds hand ***
SetSpriteSize (handid,-1,GetSpriteHeight (faceid) *0.22)
SetSpriteOffset (handid,GetSpriteWidth (handid) /2,
L GetSpriteHeight (handid))
SetSpritePositionByOffset (handid,GetSpriteX (faceid) +
L GetSpriteWidth (faceid) /2.0,GetSpriteY (faceid) +
L GetSpriteHeight (faceid) /2.0)
endfunction

SetGUIStopwatchDepth()

Mini-spec:

FUNCTION NAME : SetGUIStopwatchSize

PARAMETERS
In :id : integer
d : integer
Out : None
PRE-CONDITION : idisavalid stopwatch ID AND 2 <=d <=9999
DESCRIPTION : Places the face of the watch and the time label on

layer d. The watch buttons are on layer d+1 and
the seconds hand on layer d-1.

Hands On AppGameKit Studio Volume 2: Supplement 1

Code:

//*** Sets the depth of the stopwatch ***
function SetGUIStopwatchDepth(id as integer, d as integer)
//*** If the id is invalid, exit ***
if id < 1 or id > GUIStopwatches.length
exitfunction
endif
//*** If stopwatch deleted, exit ***
if GUIStopwatches[id].deleted = 1
exitfunction
endif
//*** If depth invalid, exit ***
if d < 2 or d > 9999
exitfunction
endif
//*** Create a set of shorter names ***
faceid = GUIStopwatches[id].facespr
ssid = GUIStopwatches[id] .ssspr
resetid = GUIStopwatches[id] .resetspr
handid = GUIStopwatches[id] .handspr
txtid = GUIStopwatches[id].timetxt
//*** Set the depth of each component ***
SetSpriteDepth (faceid,d)
SetSpriteDepth (ssid,GetSpriteDepth (faceid)+1)
SetSpriteDepth (resetid,GetSpriteDepth (faceid)+1)
SetTextDepth (txtid,GetSpriteDepth (faceid))
SetSpriteDepth (handid, GetSpriteDepth (faceid)-1)
endfunction

/Activity 10)

In StopwatchTest, add the functions SetG UIStopwatchPosition(),
SetGUIStopwatchSize(), SetGUIStopwatchDepth().
To test the routines, modify HandleOther() to perform the following logic:

Update stopwatch display

IF user has control of watch AND 5 seconds or more has passed THEN
Set watch size to a random value between 30 and 60
Set watch position to a random position (0 to 60, 0 to 60)
Set watch layer to 20
Disable user control

ENDIF

IF watch not deleted AND 10 seconds or more has passed THEN
Delete the stopwatch

ENDIF

. J
Adding the Stopwatch Widget to the GUILibrary.agc File

Now that we appear to have the Stopwatch widget fully functioning, we can copy its
data structure and associated functions to our existing GUILibrary.agc file in the
Function Library folder thereby making it easily accessable for use in other projects.

Activity 11

Open GUILibrary.agc and add the code for the Stopwatch widget to the file
before resaving it.

Hands On AppGameKit Studio Volume 2: Supplement 1 21

Keep on Testing

22

It seems like we have our stopwatch working perfectly. But our testing has been very
superficial so there’s a likely chance we’ve missed something. And we have.

/Activity 12 A

Start a new project called StopwatchTest2 and create two stopwatches. Run the
program.

What happens when you try starting and stopping each watch independently by
kclicking on the watch buttons?)

Our problem this time was caused by our previous decision to use 7imer() and
ResetTimer() when starting and updating the stopwatch. The call to ResetTimer() in
the StartGUIStopwatch() function meant that the elapsed time used by every
stopwatch was reset rather than just the specific watch whose start/stop button had
been pressed.

To solve this problem, we’ll start by adding a new field to the StopwatchType data
structure. This new field will record the absolute time (from the start of the app’s
execution) at which the stopwatch was last started:

type StopwatchType

faceimg as integer //ID of face image
startstopimg as integer //ID for start/stop button image
resetimg as integer //ID for reset button image
handimg as integer //ID of watch hand image
facespr as integer //ID of face sprite
ssspr as integer //ID of start/stop button sprite
resetspr as integer //ID of reset button sprite
handspr as integer //ID of watch hand sprite
timetxt as integer //ID of text showing elapsed time
time as integer //Elapsed time since started (msecs)
stoptime as integer //Time on watch when stopped
laststarted as integer //App time of last start
state as integer //0: stopped, 1: running
enabled as integer //Buttons disabled (l:yes, 0:no)
deleted as integer //(0: exists, 1l:deleted)

endtype

This new field should be set to zero in CreateGUIStopwatch():

//*** Stopwatch never been started ***
GUIStopwatches[id] .laststarted = 0

Next, we’ll have this new value set by StartGUIStopwatch() where we’ll also remove
the call to ResetTimer():

//*** Starts stopwatch running ***
function StartGUIStopwatch(id as integer)
//*** If the id is invalid, exit ***
if id < 1 or id > GUIStopwatches.length

exitfunction
endif
//*** If stopwatch deleted, exit ***
if GUIStopwatches[id].deleted =1
exitfunction
endif
//*** Set to running state ***
GUIStopwatches[id] .state = 1

Hands On AppGameKit Studio Volume 2: Supplement 1

//*** Record app time when watch started **x*
GUIStopwatches[id] .laststarted = GetMilliseconds ()

Finally, in UpdateGUIStopwatch() we’ll use the new field to help calculate the time
showing on the watch:

GUIStopwatches[id].time = GUIStopwatches[id].stoptime +
L (GetMilliseconds () - GUIStopwatches[id] .laststarted)

Activity 13
In GUILibrary.agc make the changes specified above.

What happens this time when you try starting and stopping each watch
independently?

Things will be Better Next Time Round

No matter how much effort we put into design before implementation, the chances
are when we’ve spent a long time coding a data structure and its associated functions
we’ll come up with better ideas on how we’d modify it next time round.

In the case of the Stopwatch widget, if we’d written GetGUIStopwatchExists()
earlier, we could have replaced the code

//*** If the id is invalid, exit ***

if id < 1 or id > GUIStopwatches.length
exitfunction

endif

//*** If stopwatch deleted, exit ***

if GUIStopwatches[id].deleted =1
exitfunction

endif

which appears in most of the functions, with the code

if NOT GetGUIStopwatchExists (id)
exitfunction

Also, it would have been better to allow SetGUIStopwatchControls() to enable/
disable the watch buttons on an individual basis. That way, when using the stopwatch
in a game, we could allow the player to stop the timing but not reset it.

This widget (an improved version) and others will be included in the next version of
Hands On AppGameKit Studio Volume 2 (available free to those who have
previously purchased the book directly from Digital Skills (www.digital-skills.
co.uk)).

Hands On AppGameKit Studio Volume 2: Supplement 1 23

solutions

Activity 1
Code for StopwatchTest:
// Project: StopwatchTest
// Created: 20-04-21

//*** Include required library files ***
#include “../Function Library/CoreLibrary.agc”

//
[/ *xx Stopwatch Data & Functions *kk
//**************************************
type StopwatchType
faceimg as integer //ID of face image
startstopimg as integer //ID for start/stop
Lhutton image

resetimg as integer //ID for reset button
% image

handimg as integer //ID of watch hand image

facespr as integer //ID of face sprite

ssspr as integer //ID of start/stop button
L sprite

resetspr as integer //ID of reset button
Lsprite

handspr as integer //ID of watch hand sprite

timetxt as integer //ID of text showing
Lelapsed time

time as integer //Elapsed time since
Lstarted (msecs)

state as integer //Stopwatch state (0:

Y stopped, 1: running)
disabled as integer //Buttons disabled (1l:yes,
%0:n0)
deleted as integer //(0: exists, l:deleted)
endtype

global GUIStopwatches as StopwatchType[0]

//*** Creates stopwatch. Uses images facefile+
% facefileshad+facefiless+facefilereset+facefilehand ***
//*** The time elapsed is set to zero and the watch
Lis stopped, buttons are enabled *kk
function CreateGUIStopwatch(x as float, y as float,
Yw as float, h as float, facefile as string)
//*** Add cell to stopwatch list ***
GUIStopwatches.length = GUIStopwatches.length+l
//*** Last position in array is new button’s ID
Gykkk
id = GUIStopwatches.length
//*** Load images ***
GUIStopwatches[id].faceimg = LoadImage (facefile)
GUIStopwatches[id] .startstopimg = LoadImage (Left (
% facefile,Len (facefile) -4) +”ss”+Right (facefile, 4))
GUIStopwatches[id] .resetimg = LoadImage (Left (
U facefile,Len (facefile) -4) +”reset”+Right (facefile, 4))
GUIStopwatches[id] .handimg = LoadImage (Left(
%faceﬁle,Len(faceﬁle)-4)+”hand”+Right(faceﬁle,4))
//*** Create, size and position face sprite ***
GUIStopwatches[id].facespr = CreateSprite(
L GUIStopwatches[id] . faceimg)
faceid = GUIStopwatches[id].facespr
SetSpriteSize (faceid,w,h)
SetSpritePosition (faceid, x,y)
//*** Create, size, position and layer start/stop
Gbutton ***
GUIStopwatches[id] .ssspr = CreateSprite(
L GUIStopwatches[id] .startstopimg)
ssid = GUIStopwatches[id].ssspr
SetSpriteSize(ssid,w*0.15,-1)
SetSpritePositionByOffset (ssid,x+GetSpriteWidth (
& faceid) /2.0,y-GetSpriteHeight (ssid) /2.1)
SetSpriteDepth (ssid,GetSpriteDepth (faceid) +1)
//*** Create, size, position and layer reset
Lbutton ***
GUIStopwatches[id] .resetspr =
& CreateSprite (GUIStopwatches[id] . resetimg)
resetid = GUIStopwatches[id].resetspr
SetSpriteSize (resetid,w*0.13,-1)
SetSpritePositionByOffset (resetid, x+
% GetSpriteWidth (faceid) /1.5,y)
SetSpriteDepth (resetid,GetSpriteDepth (faceid)+1)
//*** Create, align, size, position and layer time
G label ***
GUIStopwatches[id].timetxt = CreateText (“0:00”)

txtid = GUIStopwatches[id].timetxt
SetTextAlignment (txtid,2)
SetTextSize (txtid,GetSpriteHeight (faceid)*0.08)
SetTextPosition (txtid,x+GetSpriteWidth (faceid)/
%1.68, y+GetSpriteHeight (faceid)/1.747)
SetTextDepth (txtid,GetSpriteDepth (faceid))
//*** Create, size, position and layer seconds
$hand ***
GUIStopwatches[id] .handspr = CreateSprite (
% GUIStopwatches[id] .handimg)
handid = GUIStopwatches[id].handspr
SetSpriteSize (handid,-1,GetSpriteHeight (
& faceid) *0.22)
SetSpriteOffset (handid,GetSpriteWidth (handid) /2,
L GetSpriteHeight (handid))
SetSpritePositionByOffset (handid,GetSpriteX(
& faceid)+ GetSpriteWidth (faceid) /2.0,
GetSpriteY (faceid)+GetSpriteHeight (faceid) /2.0)
SetSpriteDepth (handid, GetSpriteDepth (faceid)-1)
//*** Stopwatch not deleted ***
GUIStopwatches[id] .deleted = 0
//*** Stopwatch not disabled ***
GUIStopwatches[id] .disabled = 0
//*** Stopwatch stopped ***
GUIStopwatches[id].state = 0

endfunction id

type GameType
id as integer //ID of Stopwatch
endtype

global g as GameType

//***************************************
[/ *** Main program *kk
/7
InitialiseScreen(1000,750,”StopwatchTest”, 0x585858,
$%1111)
LoadResources ()
CreatelInitialLayout()
do

in = GetUserInput()

HandleUserInput (in)

HandleOther ()

Sync ()
loop

/7
//%** Functions *Hx
//
function LoadResources ()
endfunction

function CreateInitialLayout()
g.id = CreateGUIStopwatch(30,30,40,-1,
% ”swatch.png”)

endfunction

function GetUserInput()
result = 1
endfunction result

function HandleUserInput(in as integer)
endfunction

function HandleOther ()
endfunction

Activity 2
Modified code for StopwatchTest:

24 Hands On AppGameKit Studio Volume 2: Supplement 1

handimg as integer //ID of watch hand image

//*** Stopwatch not disabled ***

facespr as integer //ID of face sprite GUIStopwatches[id] .disabled = 0
ssspr as integer //ID of start/stop button //*** Stopwatch stopped ***
%sprite GUIStopwatches[id] .state = 0
resetspr as integer //ID of reset button endfunction id
Lsprite
handspr as integer //ID of watch hand sprite
timetxt as integer //ID of text showing //*** Starts stopwatch running ***
YLelapsed time function StartGUIStopwatch(id as integer)
time as integer //Elapsed time since //*** If the id is invalid, exit ***
L started (msecs) if id < 1 or id > GUIStopwatches.length
state as integer //Stopwatch state (0: exitfunction

Y stopped, 1: running)
disabled as integer //Buttons disabled (1l:yes,
%0:no)
deleted as integer //(0: exists, l:deleted)
endtype

global GUIStopwatches as StopwatchType[0]

endif

//*** If stopwatch deleted, exit ***

if GUIStopwatches[id].deleted = 1
exitfunction

endif

//*** Set to running state **%

GUIStopwatches[id].state = 1

endfunction
//*** Creates stopwatch. Uses images facefile+
% facefileshad+facefiless+facefilereset+facefilehand ***
//*** The time elapsed is set to zero and the watch //*** Stops the stopwatch running ***
Lis stopped, buttons are enabled dadd function StopGUIStopwatch(id as integer)

function CreateGUIStopwatch(x as float, y as float,
Lw as float, h as float, facefile as string)
//*** Add cell to stopwatch list ***
GUIStopwatches.length = GUIStopwatches.length+l
//*** Last position in array is new button’s ID
Ly kkx
id = GUIStopwatches.length
//*** Load images ***
GUIStopwatches[id] .faceimg = LoadImage (facefile)
GUIStopwatches[id] .startstopimg = LoadImage (Left(

//*** If the id is invalid, exit ***

if id < 1 or id > GUIStopwatches.length
exitfunction

endif

//*** If stopwatch deleted, exit ***

if GUIStopwatches[id].deleted = 1
exitfunction

endif

//*** Set to stopped state ***

GUIStopwatches[id].state = 0

%faceﬁle,Len(faceﬁle)—4)+”ss”+Right(faceﬁle,4)) endfunction

GUIStopwatches[id] .resetimg = LoadImage (Left (

% facefile,Len (facefile) -4) +”reset”+Right (facefile, 4)) //*** Returns the current state of the ***
GUIStopwatches[id] .handimg = LoadImage (Left(//*** stopwatch (running or stopped) kdkk
% facefile,Len (facefile) -4) +”hand”+Right (facefile, 4)) function GetGUIStopwatchState(id as integer)

//*** Create, size and position face sprite ***
GUIStopwatches[id] .facespr = CreateSprite(

L GUIStopwatches[id] . faceimg)

faceid = GUIStopwatches[id].facespr

SetSpriteSize (faceid,w,h)

SetSpritePosition (faceid, x,y)

//*** Create, size, position and layer start/stop
Lbutton ***

GUIStopwatches[id] .ssspr = CreateSprite(

L GUIStopwatches[id] .startstopimg)

//*** If the id is invalid, exit -1**x*

if id < 1 or id > GUIStopwatches.length
exitfunction -1

endif

//*** If stopwatch deleted, exit -1 ***

if GUIStopwatches[id].deleted = 1
exitfunction -1

endif

//*** Set result to watch current state ***

result = GUIStopwatches[id].state

ssid = GUIStopwatches[id].ssspr endfunction result

SetSpriteSize(ssid,w*0.15,-1)
SetSpritePositionByOffset (ssid,x+GetSpriteWidth (

& faceid) /2.0,y-GetSpriteHeight (ssid) /2.1) //*** Update the stopwatch visuals, moving *kk
SetSpriteDepth (ssid,GetSpriteDepth (faceid)+1) //*** seconds hand and changing digital time ***
//*** Create, size, position and layer reset function UpdateGUIStopwatch(id as integer)

Gbutton ***
GUIStopwatches[id] .resetspr =
%CreateSprite(GUIStopwatches[id].resetimq)

resetid = GUIStopwatches[id] .resetspr
SetSpriteSize (resetid,w*0.13,-1)
SetSpritePositionByOffset (resetid, x+

L GetSpriteWidth (faceid) /1.5,y)

SetSpriteDepth (resetid,GetSpriteDepth (faceid)+1)
//*** Create, align, size, position and layer time
Llabel ***

GUIStopwatches[id].timetxt = CreateText(“0:00")
txtid = GUIStopwatches[id].timetxt
SetTextAlignment (txtid,2)

SetTextSize (txtid,GetSpriteHeight (faceid) *0.08)
SetTextPosition (txtid,x+GetSpriteWidth (faceid) /
$1.68, y+GetSpriteHeight (faceid)/1.747)
SetTextDepth (txtid,GetSpriteDepth (faceid))

//*** Create, size, position and layer seconds
Lhand ***

GUIStopwatches[id] .handspr = CreateSprite(

//*** If the id is invalid, exit ***x

if id < 1 or id > GUIStopwatches.length
exitfunction

endif

//*** If stopwatch deleted, exit ***

if GUIStopwatches[id].deleted =1
exitfunction

endif//*** If watch stopped, exit ***

if GUIStopwatches[id].state = 0
exitfunction

endif

//*** Record the time passed ***

GUIStopwatches[id].time = GetMilliseconds ()

msecs = GUIStopwatches[id].time

//*** Modify angle of seconds hand to show seconds

Linto current minute ***

SetSpriteAngle (GUIStopwatches[id] .handspr,

Ymsecs*6.0/1000.0)

//*** Update the digital time on label ***

SetTextString (GUIStopwatches[id] . timetxt,

% ToMinutesSeconds (msecs))

L GUIStopwatches[id] .handimg) endfunction

handid = GUIStopwatches[id] .handspr

SetSpriteSize (handid,-1,GetSpriteHeight (//

% faceid) *0.22) //*** Stopwatch Helper Functions *kk
SetSpriteOffset (handid,GetSpriteWidth (handid) /2, //

%GetSpriteHeight(handid)) function ToMinutesSeconds (msecs as integer)

SetSpritePositionByOffset (handid,GetSpriteX(

& faceid)+ GetSpriteWidth (faceid) /2.0,

L GetSpriteY (faceid) +GetSpriteHeight (faceid) /2.0)
SetSpriteDepth (handid, GetSpriteDepth (faceid)-1)
//*** Stopwatch not deleted ***

totalsecs = msecs /1000

mins = totalsecs / 60

secs = Mod(totalsecs, 60)

result as string

result = Str(mins)+”:”+Right (“0”+Str (secs) ,2)

GUIStopwatches[id] .deleted = 0 endfunction result

Hands On AppGameKit Studio Volume 2: Supplement 1

25

type GameType
id as integer //ID of Stopwatch
endtype

global g as GameType

A e e
[/ *** Main program *kk
//***************************************
InitialiseScreen(1000,750,”StopwatchTest”, 0x585858,
$91111)
LoadResources ()
CreatelInitialLayout()
do

in = GetUserInput()

HandleUserInput (in)

HandleOther ()

Sync ()
loop

[/ %% e e e ek e e ek ok e e ek ok ek ok ok ok e ok ok ok ok ek ok ok ok ek ok ok ok

[/*** Functions Ak
//***************************************

function LoadResources ()
endfunction

function CreatelInitialLayout()
g.id = CreateGUIStopwatch(30,30,40,-1,
L ”swatch.png”)
StartGUIStopwatch (g.id)

endfunction

function GetUserInput ()
result =1
endfunction result

function HandleUserInput(in as integer)
endfunction

function HandleOther ()
UpdateGUIStopwatch (g.id)
endfunction

The stopwatch should show the elapsed time correctly.

Activity 3
To check that the watch stops, HandleOther() is modified to:

function HandleOther ()
UpdateGUIStopwatch (g.id)
if GetMilliseconds() > 5000
StopGUIStopwatch (g.id)
endif
endfunction

The watch should stop after 5 seconds.

Activity 4
To check that the watch runs as expected after a delay
of five seconds, we’ll start by removing the call to
StartGUIStopwatch() in CreatelnitialLayout():
function CreatelInitiallLayout()
g.id = CreateGUIStopwatch(30,30,40,-1,

L ”swatch.png”)
endfunction

Next, we’ll change HandleOther() to call
StartGUIStopwatch() rather than StopGUIStopwatch():

function HandleOther ()
UpdateGUIStopwatch (g.id)
if GetMilliseconds() > 5000
StartGUIStopwatch(g.id)
endif
endfunction

Although the stopwatch does start after five seconds, it
doesn’t start at zero. Instead it jumps immediately to show
that five seconds has passed. This is not the reaction we
would want since the stopwatch is meant to show the time
that has elapsed since it was placed in running mode.

26 Hands On AppGameKit Studio Volume 2: Supplement 1

Activity 5
Modified code for StartGUIStopwatch():

//*** Starts stopwatch running ***
function StartGUIStopwatch(id as integer)
//*** If the id is invalid, exit ***

if id < 1 or id > GUIStopwatches.length
exitfunction

endif

//*** If stopwatch deleted, exit ***

if GUIStopwatches[id].deleted = 1
exitfunction

endif

//*** Set to running state ***

GUIStopwatches[id] .state = 1

//*** Set elapsed time to zero ***

ResetTimer ()

endfunction

Modified code for UpdateGUIStopwatch():

/*** Update the stopwatch visuals, moving *kk
//*** seconds hand and changing digital time ***
function UpdateGUIStopwatch(id as integer)
//*** If the id is invalid, exit ***
if id < 1 or id > GUIStopwatches.length
exitfunction
endif
//*** If stopwatch deleted, exit ***
if GUIStopwatches[id].deleted = 1
exitfunction
endif//*** If watch stopped, exit ***
if GUIStopwatches[id].state = 0
exitfunction
endif
//*** Record the time passed ***
GUIStopwatches[id].time = Timer () *1000
msecs = GUIStopwatches[id].time

//*** Modify angle of seconds hand to show seconds

Linto current minute ***
SetSpriteAngle (GUIStopwatches[id] .handspr,
Y msecs*6.0/1000.0)
//*** Update the digital time on label ***
SetTextString (GUIStopwatches[id].timetxt,
L ToMinutesSeconds (msecs))

endfunction

Although the stopwatch now starts at zero, it keeps resetting

every five seconds!

By modifying HandleOther() to read

function HandleOther ()
UpdateGUIStopwatch(g.id)
if GetMilliseconds() > 5000
%L and GetGUIStopwatchState(g.id) = 0
StartGUIStopwatch(g.id)
endif
endfunction

the resetting problem is eliminated.

Activity 6
After adding the code for ResetGUIStopwatch(), the main

program functions CreatelnitialLayout() and HandleOther()

program’s code should be changed to:

function CreatelInitialLayout()
g.id = CreateGUIStopwatch(30,30,40,-1,
% ”swatch.png”)
StartGUIStopwatch(g.id)

endfunction

function HandleOther ()
UpdateGUIStopwatch(g.id)
if GetMilliseconds() > 5000 and
%GetGUIStopwatchState (g.id) = 1
ResetGUIStopwatch(g.id)
endif
endfunction

The seconds hand should now rotate as far as the 5 seconds

mark before reseting itself to the zero position. The digital
time should also reset to 0:00.

Activity 7
After adding the code for HandleGUIStopwatch(), the
following changes are required in the main program’s
functions:
function HandleUserInput(in as integer)

HandleGUIStopwatch(g.id)
endfunction

function HandleOther (
UpdateGUIStopwatch (g.id)
endfunction

When we test the program, the buttons move up and down as
expected. Stop and reset operations perform as expected.

But, when we restart the stopwatch it always returns to zero
rather than continuing on from its previous setting.

Activity 8
After making the changes, all operations perform as
expected.

Activity 9
FUNCTION NAME GetGUIStopwatchControls
PARAMETERS
In coid : integer
Out : result :integer
PRE-CONDITION id is a valid stopwatch ID.
DESCRIPTION Sets result to 1 if the user can
control the start/stop and reset
buttons. result is set to zero if
user cannot use controls.
result is set to -1 if id is invalid.
Code:

//*** Returns 1 if user can interact ***
//*** with stopwatch buttons, else *kk
//*** zero is returned *kk
function GetGUIStopwatchControls(id as integer)
//*** If the id is invalid, exit -1 ***
if id < 1 or id > GUIStopwatches.length
exitfunction -1
endif
//*** If stopwatch deleted, exit -1 ***%
if GUIStopwatches[id].deleted = 1
exitfunction -1
endif
result = GUIStopwatches[id].enabled
endfunction result

FUNCTION NAME GetGUIStopwatchExists
PARAMETERS
In :oid : integer
Out : result :integer
PRE-CONDITION None
DESCRIPTION Sets result to 1 if a stopwatch
with an ID of id exists
otherwise result is set to zero.
Code:
//*** Returns 1 if watch id exists, ***
//*** else returns zero *kk

function GetGUIStopwatchExists(id as integer)
result = 1

//*** If the id is invalid, result is 0 ***x

if id < 1 or id > GUIStopwatches.length
result = 0

endif

//*** If stopwatch deleted, result is 0 ***

if GUIStopwatches[id].deleted = 1
result = 0

endif

endfunction result

Modified code for
[] %k kK ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
[/ *** Main program kK

P

InitialiseScreen(1000,750,”StopwatchTest”, 0x585858,

5%1111)
LoadResources ()
CreateInitialLayout (
do
in = GetUserInput()
HandleUserInput (in)
HandleOther ()
Print (GetGUIStopwatchTime (g.id))
Sync ()
loop

function HandleOther (
UpdateGUIStopwatch (g.id)
if GetGUIStopwatchControls(g.id) = 1 and
L GetMilliseconds () > 5000
SetGUIStopwatchControls(g.id,0)
endif
if GetMilliseconds() > 15000 and
% GetGUIStopwatchExists (g.id)
DeleteGUIStopwatch(g.id)
endif
endfunction

Activity 10
Modified code for HandleOther():

function HandleOther ()
UpdateGUIStopwatch (g.id)
if GetGUIStopwatchControls(g.id) = 1 and
L GetMilliseconds () > 5000
SetGUIStopwatchSize (g.id,Random2 (30,60) ,-1)
SetGUIStopwatchPosition(g.id,Random2(0,60),
%Random2 (0, 60))
SetGUIStopwatchDepth(g.id,20)
SetGUIStopwatchControls(g.id,0)
endif
if GetGUIStopwatchExists(g.id) and
% GetMilliseconds () > 10000
DeleteGUIStopwatch(g.id)
endif
endfunction

The new functions operate as expected.

Activity 11
No solution required.

Activity 12
Code for StopwatchTest2:

// Project: StopwatchTest2
// Created: 20-04-25

//*** Include required library files ***
#include “../Function Library/CoreLibrary.agc”

#include “../Function Library/GUILibrary2.agc”

type GameType

id1 as integer
id2 as integer
endtype

global g as GameType

//
//***
//

Main program *hk

Hands On AppGameKit Studio Volume 2: Supplement 1

27

InitialiseScreen(1000,750,”StopwatchTest2”,
0x585858, %1111)
LoadResources ()
CreateInitialLayout()
do
in = GetUserInput ()
HandleUserInput (in)
HandleOther ()
Sync ()
loop

[/3 36k e e ok e e ok ok e ek ok ok ke ke ok ok ok ke ok ok ok ok ke ok ok ok ok ek ok

[/ *** Functions *kk
//

function LoadResources ()

endfunction

function CreateInitialLayout()
g.idl = CreateGUIStopwatch(10,20,30,-1,
% ”swatch.png”)
g.id2 = CreateGUIStopwatch(60,20,30,-1,
% ”swatch.png”)

endfunction

function GetUserInput()
result = 1
endfunction result

function HandleUserInput(in as integer)
HandleGUIStopwatch (g.idl)
HandleGUIStopwatch (g.id2)
endfunction

function HandleOther ()
UpdateGUIStopwatch (g.idl)
UpdateGUIStopwatch (g.id2)
endfunction

The problem is that when we start the second watch after
previously starting the first, the first watch resets itself to
Zero.

Activity 13
This time the two stopwatches operate as expected.

The final listing of Stopwatch widget’s code in GUILibrary.
agc:

28

//**************************************
[/ *** Stopwatch Data & Functions *kk
//
type StopwatchType
faceimg as integer //ID of face image
startstopimg as integer //ID for start/stop
GLbutton image

resetimg as integer //ID for reset button
% image
handimg as integer //ID of watch hand image
facespr as integer //ID of face sprite
ssspr as integer //ID of start/stop button
L sprite
resetspr as integer //ID of reset button
Lsprite
handspr as integer //ID of watch hand sprite
timetxt as integer //ID of text showing
Lelapsed time
time as integer //Elapsed time since
Y started (msecs)
stoptime as integer //Time on watch when
% stopped
laststarted as integer //App time of last start
state as integer //0: stopped, 1: running
enabled as integer //Buttons enabled (1l:yes,
%0:no0)
deleted as integer //(0: exists, l:deleted)
endtype

global GUIStopwatches as StopwatchType[0]

//*** Creates stopwatch. Uses images facefile+
facefileshad+facefiless+facefilereset+facefilehand ***

//*** The time elapsed is set to zero and the watch
%L is stopped, buttons are enabled dkde
function CreateGUIStopwatch(x as float, y as float,
Lw as float, h as float, facefile as string)

//*** Add cell to stopwatch list ***
GUIStopwatches.length = GUIStopwatches.length+l
//*** Last position in array is new button’s ID
Lykkx

id = GUIStopwatches.length

//*** Load images ***
GUIStopwatches[id].faceimg = LoadImage (facefile)
GUIStopwatches[id].startstopimg = LoadImage (Left (
U facefile,Len (facefile) -4) +”ss”+Right (facefile, 4))
GUIStopwatches[id] .resetimg = LoadImage (Left (

% facefile,Len (facefile) -4) +”reset”+Right (facefile, 4))
GUIStopwatches[id] .handimg = LoadImage (Left(

U facefile,Len (facefile) -4) +”hand”+Right (facefile, 4))
//*** Create, size and position face sprite ***
GUIStopwatches[id].facespr = CreateSprite(

% GUIStopwatches[id] . faceimg)

faceid = GUIStopwatches[id].facespr
SetSpriteSize (faceid,w,h)

SetSpritePosition (faceid, x,y)

//*** Create, size, position and layer start/stop
Lbutton ***

GUIStopwatches[id] .ssspr = CreateSprite(

L GUIStopwatches[id] . startstopimg)

ssid = GUIStopwatches[id].ssspr
SetSpriteSize(ssid,w*0.15,-1)
SetSpritePositionByOffset (ssid, x+GetSpriteWidth (
U faceid) /2.0,y-GetSpriteHeight (ssid) /2.1)
SetSpriteDepth (ssid,GetSpriteDepth (faceid)+1)
//*** Create, size, position and layer reset
Lbutton ***

GUIStopwatches[id] .resetspr = CreateSprite(

L GUIStopwatches[id] .resetimg)

resetid = GUIStopwatches[id].resetspr
SetSpriteSize (resetid,w*0.13,-1)
SetSpritePositionByOffset (resetid, x +

% GetSpriteWidth (faceid) /1.5,y)

SetSpriteDepth (resetid,GetSpriteDepth (faceid)+1)
//*** Create, align, size, position and layer time
$label **x

GUIStopwatches[id].timetxt = CreateText (“0:00”)
txtid = GUIStopwatches[id].timetxt
SetTextAlignment (txtid,2)

SetTextSize (txtid,GetSpriteHeight (faceid)*0.08)
SetTextPosition (txtid,x+GetSpriteWidth (faceid)/
%1.68, y+GetSpriteHeight (faceid)/1.747)
SetTextDepth (txtid, GetSpriteDepth (faceid))

//*** Create, size, position and layer seconds
“hand ***

GUIStopwatches[id] .handspr = CreateSprite(

% GUIStopwatches[id] .handimg)

handid = GUIStopwatches[id].handspr
SetSpriteSize (handid,-1, GetSpriteHeight(

U faceid) *0.22)
SetSpriteOffset (handid, GetSpriteWidth (handid) /2,
% GetSpriteHeight (handid))
SetSpritePositionByOffset (handid,GetSpriteX (faceid)
&+ GetSpriteWidth (faceid)/2.0,

GetSpriteY (faceid)+GetSpriteHeight (faceid) /2.0)
SetSpriteDepth (handid, GetSpriteDepth (faceid)-1)
//*** Stopwatch not deleted ***
GUIStopwatches[id] .deleted = 0

//*** Stopwatch is enabled ***
GUIStopwatches[id] .enabled = 1

//*** Stopwatch stopped ***
GUIStopwatches[id] .state = 0

//*** Stopwatch never been started ***
GUIStopwatches[id].laststarted = 0

endfunction id

//*** Starts stopwatch running ***
function StartGUIStopwatch(id as integer)

//*** If the id is invalid, exit ***

if id < 1 or id > GUIStopwatches.length
exitfunction

endif

//*** If stopwatch deleted, exit ***

if GUIStopwatches[id].deleted = 1
exitfunction

endif

//*** Set to running state ***

GUIStopwatches[id] .state = 1

//*** Record app time when watch started ***

GUIStopwatches[id].laststarted = GetMilliseconds ()

endfunction

//*** Stops the stopwatch running ***
function StopGUIStopwatch(id as integer)

//*** If the id is invalid, exit ***

Hands On AppGameKit Studio Volume 2: Supplement 1

if id < 1 or id > GUIStopwatches.length
exitfunction

endif

//*** If stopwatch deleted, exit ***

if GUIStopwatches[id].deleted = 1
exitfunction

endif

//*** Set to stopped state ***

GUIStopwatches[id].state = 0

//*** Save current time on watch ***

GUIStopwatches[id] .stoptime =

L GUIStopwatches[id] . time

endfunction

//*** Returns the current state of the ***
//*** stopwatch (running or stopped) *kk
function GetGUIStopwatchState(id as integer)
//*** If the id is invalid, exit -1***
if id < 1 or id > GUIStopwatches.length
exitfunction -1
endif
//*** If stopwatch deleted, exit -1 **%
if GUIStopwatches[id].deleted = 1
exitfunction -1
endif
//*** Set result to watch current state ***
result = GUIStopwatches[id].state
endfunction result

//*** Update the stopwatch visuals, moving *kk
//*** seconds hand and changing digital time ***

function UpdateGUIStopwatch(id as integer)

//*** If the id is invalid, exit ***

if id < 1 or id > GUIStopwatches.length
exitfunction

endif

//*** If stopwatch deleted, exit ***

if GUIStopwatches[id].deleted =1
exitfunction

endif

//*** If watch stopped, exit ***

if GUIStopwatches[id].state = 0
exitfunction

endif

//*** Record the time passed ***

GUIStopwatches[id].time =

L GUIStopwatches[id] .stoptime + (GetMilliseconds()-

L GUIStopwatches[id] .laststarted)
msecs = GUIStopwatches[id].time

//*** Modify angle of seconds hand to show seconds

Linto current minute ***
SetSpriteAngle (GUIStopwatches[id] .handspr,
Y msecs*6.0/1000.0)
//*** Update the digital time on label ***
SetTextString (GUIStopwatches[id] . timetxt,
% ToMinutesSeconds (msecs))

endfunction

//*** Resets the time to zero and places ***
//*** the watch in stopped mode Hhx
function ResetGUIStopwatch(id as integer)
//*** If the id is invalid, exit ***
if id < 1 or id > GUIStopwatches.length
exitfunction
endif
//*** If stopwatch deleted, exit ***
if GUIStopwatches[id].deleted = 1
exitfunction
endif
//*** Stopwatch stopped ***
GUIStopwatches[id].state = 0
//*** No time has been recorded ***
GUIStopwatches[id].time = 0
GUIStopwatches[id] .stoptime = 0
//*** Reset second hand and digital time ***
SetSpriteAngle (GUIStopwatches[id] .handspr,0)

SetTextString (GUIStopwatches[id].timetxt,”0:00”)

endfunction

//*** Handles user interaction with watch ***
//*** Allows start/stop and reset dedek
//*** Returns a value indicating action *kk
function HandleGUIStopwatch(id as integer)
//*** If the id is invalid, exit zero ***
if id < 1 or id > GUIStopwatches.length
exitfunction 0

endif
//*** If stopwatch deleted, exit zero ***
if GUIStopwatches[id].deleted =1
exitfunction 0
endif
result = 0
//*** 1f watch disabled, exit zero ***x
if GUIStopwatches[id].enabled = 0
exitfunction 0
endif
result = 0
//*** If pointer pressed ***
if GetPointerPressed()
hit = GetSpriteHit (GetPointerX(), GetPointerY())
//*** If start/stop button pressed ***
if hit = GUIStopwatches[id].ssspr
//*** Show start/stop button moving down and
Lback ***
SetSpriteY (hit, GetSpriteY(hit) +
LGetSpriteHeight (hit) /2.0)
Sync ()
Sleep(100)
SetSpriteY(hit, GetSpriteY(hit) -
YL GetSpriteHeight (hit) /2.0)
//*** If watch stopped, start it ***
if GUIStopwatches[id].state = 0
StartGUIStopwatch (id)
GUIStopwatches[id] .state = 1
result = 1
else //If watch running, stop it

StopGUIStopwatch (id)
result = -1
endif

//*** If reset pressed ***

elseif hit = GUIStopwatches[id].resetspr
//*** Show reset button moving down and back
Uy kekk
SetSpritePosition (hit,GetSpriteX(hit) -
YL GetSpriteWidth (hit) /5.0,GetSpriteY (hit) +
YL GetSpriteHeight (hit)/4.0)
Sync ()
Sleep(100)
SetSpritePosition(hit,GetSpriteX(hit) +
YL GetSpriteWidth (hit) / 5.0,GetSpriteY (hit) -
YL GetSpriteHeight (hit) /4.0)
ResetGUIStopwatch (id)
result = 2

endif

endif
endfunction result

//*** Disables user interaction with stopwatch ***
function SetGUIStopwatchControls(id as integer,
Lflag as integer)
//*** If the id is invalid, exit ***
if id < 1 or id > GUIStopwatches.length
exitfunction
endif
//*** If stopwatch deleted, exit ***
if GUIStopwatches[id].deleted =1
exitfunction
endif
//*** Disable controls ***
if flag = 0
GUIStopwatches[id] .enabled = 0
else
GUIStopwatches[id] .enabled = 1
endif
endfunction

//*** Returns 1 if user can interact ***
//*** with stopwatch buttons, else *kk
//*** zero is returned *Hx
function GetGUIStopwatchControls(id as integer)
//*** If the id is invalid, exit -1 ***
if id < 1 or id > GUIStopwatches.length
exitfunction -1
endif
//*** If stopwatch deleted, exit -1 ***
if GUIStopwatches[id].deleted =1
exitfunction -1
endif
result = GUIStopwatches[id].enabled
endfunction result

//*** Returns the stopwatch’s time ***
function GetGUIStopwatchTime (id as integer)

Hands On AppGameKit Studio Volume 2: Supplement 1 29

//*** If id invalid, exit -1 ***

if id < 1 or id > GUIStopwatches.length
exitfunction -1

endif

//*** If stopwatch deleted, exit -1 **%

if GUIStopwatches[id].deleted = 1
exitfunction -1

endif

//*** Return time ***

result = GUIStopwatches[id].time

endfunction result

//*** Returns 1 if watch id exists, ***
//*** else returns zero *Hx
function GetGUIStopwatchExists(id as integer)
result = 1
//*** If the id is invalid, result is 0 ***
if id < 1 or id > GUIStopwatches.length
result = 0
endif
//*** If stopwatch deleted, result is 0 ***
if GUIStopwatches[id].deleted = 1
result = 0
endif
endfunction result

//*** Deletes stopwatch and resources ***
function DeleteGUIStopwatch(id as integer)
//*** If id invalid, exit ***
if id < 1 or id > GUIStopwatches.length
exitfunction
endif
//*** If stopwatch deleted, exit ***
if GUIStopwatches[id].deleted = 1
exitfunction
endif
//*** Mark as deleted ***
GUIStopwatches[id] .deleted = 1
//*** Delete sprites ***
DeleteSprite (GUIStopwatches[id] . facespr)
DeleteSprite (GUIStopwatches[id] .ssspr)
DeleteSprite (GUIStopwatches[id] .resetspr)
DeleteSprite (GUIStopwatches[id] .handspr)
//*** Delete label ***x
DeleteText (GUIStopwatches[id] . timetxt)
//*** Delete images ***
DeletelImage (GUIStopwatches[id] . faceimg)
DeletelImage (GUIStopwatches[id] .startstopimg)
DeletelImage (GUIStopwatches[id] .resetimg)
DeleteImage (GUIStopwatches[id] .handimg)
endfunction

//*** Positions stopwatch face top-left at (x,y) ***
function SetGUIStopwatchPosition(id as integer,
Lx as float, y as float)
//*** If id invalid, exit ***
if id < 1 or id > GUIStopwatches.length
exitfunction
endif
//*** If stopwatch deleted, exit ***
if GUIStopwatches[id].deleted = 1
exitfunction
endif
//*** Create a set of shorter names ***
faceid = GUIStopwatches[id].facespr
ssid = GUIStopwatches[id].ssspr
resetid = GUIStopwatches[id].resetspr
handid = GUIStopwatches[id].handspr
txtid = GUIStopwatches[id].timetxt
//*** Position face ***x
SetSpritePosition (faceid, x,y)
//*** Position start/stop button ***
SetSpritePositionByOffset (ssid, x +
L GetSpriteWidth (faceid) / 2.0, y -
L GetSpriteHeight (ssid) / 2.1)
//*** Position reset button ***
SetSpritePositionByOffset (resetid, x +
L GetSpriteWidth (faceid) /1.5, y)
//*** Position time label ***
SetTextPosition (txtid, x+GetSpriteWidth (faceid) /
%1.68, y + GetSpriteHeight (faceid) / 1.747)
//*** Position seconds hand ***
SetSpritePositionByOffset (handid,GetSpriteX (faceid)
& +GetSpriteWidth (faceid) /2.0,GetSpriteY (faceid) +
L GetSpriteHeight (faceid) / 2.0)
endfunction

//*** Resizes the specified stopwatch ***
function SetGUIStopwatchSize(id as integer, w as
float, h as float)
//*** If id invalid, exit ***
if id < 1 or id > GUIStopwatches.length
exitfunction
endif
//*** If stopwatch deleted, exit ***
if GUIStopwatches[id].deleted =1
exitfunction
endif
//*** Create a set of shorter names ***
faceid = GUIStopwatches[id].facespr
ssid = GUIStopwatches[id].ssspr
resetid = GUIStopwatches[id].resetspr
handid = GUIStopwatches[id].handspr
txtid = GUIStopwatches[id].timetxt
x as float
x = GetSpriteX(faceid)
y as float
y = GetSpriteY (faceid)
//*** Sizeface sprite ***
SetSpriteSize (faceid,w,h)
//*** Size and reposition start/stop button ***
SetSpriteSize(ssid, w * 0.15, -1)
SetSpritePositionByOffset(ssid, x +
L GetSpriteWidth (faceid) / 2.0, y -
L GetSpriteHeight (ssid) / 2.1)
//*** Size and reposition reset button ***
SetSpriteSize (resetid, w * 0.13,-1)
SetSpritePositionByOffset (resetid,x +
L GetSpriteWidth (faceid) / 1.5, y)
//*** Size and reposition time label ***
SetTextSize (txtid,GetSpriteHeight (faceid) *0.08)
SetTextPosition (txtid,x + GetSpriteWidth (faceid) /
%1.68, y + GetSpriteHeight (faceid) / 1.747)
//*** Size and reposition seconds hand ***
SetSpriteSize (handid, -1, GetSpriteHeight (faceid)
Lx 0.22)
SetSpriteOffset (handid,GetSpriteWidth (handid) / 2,
% GetSpriteHeight (handid))
SetSpritePositionByOffset (handid,GetSpriteX (faceid)
L+ GetSpriteWidth (faceid) / 2.0,GetSpriteY (faceid)
% + GetSpriteHeight (faceid) / 2.0)
endfunction

//*** Sets the depth of the stopwatch ***
function SetGUIStopwatchDepth(id as integer,
%d as integer)
//*** If the id is invalid, exit ***
if id < 1 or id > GUIStopwatches.length
exitfunction
endif
//*** If stopwatch deleted, exit ***
if GUIStopwatches[id].deleted =1
exitfunction
endif
//*** If depth invalid, exit ***
if d < 2 or d > 9999
exitfunction
endif
//*** Create a set of shorter names ***
faceid = GUIStopwatches[id].facespr
ssid = GUIStopwatches[id].ssspr
resetid = GUIStopwatches[id].resetspr
handid = GUIStopwatches[id] .handspr
txtid = GUIStopwatches[id].timetxt
//*** Set the depth of each component ***
SetSpriteDepth (faceid,d)
SetSpriteDepth (ssid,GetSpriteDepth (faceid)+1)
SetSpriteDepth (resetid,GetSpriteDepth (faceid)+1)
SetTextDepth (txtid,GetSpriteDepth (faceid))
SetSpriteDepth (handid, GetSpriteDepth (faceid)-1)
endfunction

//**************************************
//*** Stopwatch Helper Functions dkk
//
//*** Returns a formatted time string (m:ss)***
function ToMinutesSeconds (msecs as integer)

totalsecs = msecs /1000

mins = totalsecs / 60

secs = Mod(totalsecs, 60)

result as string

result = Str(mins)+”:”+Right (“0”+Str (secs),2)
endfunction result

Hands On AppGameKit Studio Volume 2: Supplement 1

